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TURBULENT DIFFUSION OF A PASSIVE IMPURITY* 

E.V. TEODOROVICH 

A solution of the diffusion equation in the case of a medium which is 
diffusing in an inhomogeneous and non-stationary manner is constructed 
using the Feynman operator formalism. The functional transformation 
proposed by Stratonovich is used for the "disentanglement of the 
operator exponent". As a result, the solution is represented in the 
form of a continual integral which differs from that obtained by Wiener 
in that, instead of an integral along trajectories, an integral of the 
velocities of the motion along the trajectories occurs in it. A 
statistical solution of the diffusion equation is obtained after 
averaging over random velocities. In the case of Gaussian statistics 
for the velocity fields or in the case of a spatially homogeneous 
non-stationary velocity field, continual integration can be carried out 
in an explicit form in the Markov approximation. In the first case, the 
result reduces to a renormalization of the coefficient of viscosity (the 
replacement of the coefficient of molecular viscosity by an effective 
coefficient of viscosity) and, in the second case, to the replacement of 
real time by an effective time. A number of papers, a list of which can 
be found /l/, are concerned with the problem of finding a technique for 
the "summation" of the coefficients of molecular and turbulent transport 
(to be specific, we shall speak about diffusion). 

1. The equation which describes the propagation of a passive impurity in the velocity 
pulsation field has the form /l/ 

/ Ia, + v (r, t) a - xcw c (r, t) = 0 (1.1) 

where C (r, t) is the concentration of the impurity, v (r,t) is the turbulent velocity and 
x is the molecular transport coefficient. 

The diffusion coefficient can be determined in various ways /2-4/ but it is most natural 
to associate it with the rate of spreading of the initially localized impurity concentration 
distribution /3/. By virtue of the linearity of Eq.(l.l), the solution of the corresponding 
Cauchy problem is defined in terms of Green's function, which describes the response of the 
concentration C(r, t) to a change in the density of the passive impurity source p(r’, t’) 

G = (G (r, t; r’, t’ 1 v (r, t))) = 6 (C (r, t)>& (r’, t’) (1.2) 

where the angular brackets denote averaging over the ensemble of samples of the velocity field 

v (r, t). Green's function for an individual sample of the concentration field is a functional 
of the individual sample of the velocity field and satisfies the equation 

L (a,, 8 1 v (r. t)) G (r, t; r’, t' 1 v (r, t)) = 
[a, + v (r, t) 8 - xP1 G(r, t; r', t’ 1 v (r, t)) = 6 (r - r’) 6 (t - t’) 

(1.3) 

If the random velocity field is homogeneous and stationary, the function c depends 
solely on the difference in the coordinates and times and, in the case of this function, it 
is possible to carry out a Fourier transformation and to conduct the treatment in the space 
of the Fourier images. It can be shown by the methods of quantum field theory /3, 5/ that the 
mean Green's function can be represented in the form 

C(p, 0) = f--i0 + x* (p, 0) p*1-1 (1.4) 

where x*(p, o) should be considered as an effective diffusion coefficient which describes the 
transport of a passive impurity by turbulent velocity pulses. 

Unfortunately, it is not possible to write the equation for G in closed form, since the 
equation for the concentration is non-linear with respect to the set of random fields C (r, t) 
and v (r, t), as a consequence of which the equation for the statistical moment of order n will 
also contain moments of order n +I even when the velocity field statistics are Gaussian. 
This is the difference between multiplicative noise (the coefficients of the equation are 
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random functions) and the corresponding Langevin approach of additive noise (the right-hand 
sides of the equations are random functions): in the case of additive noise, Gaussian stat- 
istics of the external perturbations lead, in a linear system, to Gaussian statistics for the 
quantities being considered. The chain of equations for the moments can be broken by requiring 
that the semi-invariants (of the cumulative means) should vanish starting from a certain 
order (the hypothesis of quasinormality) and while there is no rigorous proof of such a 
procedure, the deviations from Gaussian statistics do not have to be small. 

2. The sole remaining possibility for calculating the function ~7 (r, t) involves 
finding G(r, t; r’, t’]v(r, t)) at a specified velocity and subsequent averaging over the velocity 
ensemble in accordance with formula (1.2). However, the complexity of Eq.(1.3) lies in the 
fact that its coefficients are variable random functions. 

One can attempt to seek a solution using the methods of perturbation theory in the form 
of a functional 
the velocity as 
integral form 

series in powers of v(r, 0 -by considering a-term which is proportional to 
the perturbation /6/. In order to do this, we represent Eq.(1.3) in the 

G (r, 1; r', t' 1 v (r. t)) = do) (r.. t; I’, t’) - (2.1) 

s dr”dt”G(‘) (I, t; r”, t”) v (r”, t”) a”~ (I”, t’; r’, t’ 1 Y (r’. t’)) 

where G(O) (r t’ r’ t’) = G(O) (r - r’, t - t’) (3, is the solution of (1.3) for a medium which is at rest 
(v (r, t) = 0). 

Eq.(2.1) is represented graphically in Fig.1, where Green's function G corresponds to 
the fat arrow. G(O) corresponds to the thin arrow and .vi~ corresponds to the wavy line 
insertion. The iterative solution of (2.1) is represented graphically by an infinite series 
(Fig.2). Replacement of the product of the velocities by their statistical moments, which is 
shown graphically in Fig.3 corresponds to averaging with respect to the velocity ensemble. 

In the case of Gaussian statistics, the statistical moments can be represented in the 
form of the sum of all possible pairwise mean averaged fields (this assertion is referred to 
as Wick's theorem in field theory). If a velocity pair correlator is denoted graphically by 
a wavy line with two arrows, we shall have the picture shown in Fig.4 for the mean Green's 
function. Since the series which have been represented do not correspond to any expansion 
with respect to a small parameter, it is impossible to confine the iterative series to a 
finite number of terms and it is necessary to seek a solution of problem (1.3) outside of the 
framework of perturbation theory, which involves attempts to sum infinite subsequences of a 
complete series. 

Particle by particle summation of the irreducible diagrams (of type b and c in Fig.4) 
reduces to the solution of Dyson's equation. Taking account of type d diagrams reduces to 
the insertion of the complete Green's function C instead of the free Green's function 6"' and 
taking account of diagram e reduces to replacing one of the vertices (the right vertex) by 
the renormalized vertex. The discarding of type e diagrams (neglecting to renormalize the 
vertices) corresponds to the approximation of direct interactions /7/. Type d diagrams are 
summed by the renormalized group method and, when an attempt is made to take account of the 
renormalization of the vertices it is additionally necessary to consider the equation for 
the vertex containing the moments of four orders and, once again, one cones up against the 
problem of closing the chain of equations for the moments. Hence, by summing the series of 
perturbation theory, it is impossible, when there is no small parameter, to make any successful 
advances in obtaining rigorous results which leads to the need to give up any attempt at 
solving the problem within the framework of perturbation theory. 

In order to construct a general solution of Eq.(1.3) outside of the framework of 
turbation theory, 

per- 
use can be made of a method which has been developed in the theory of 

stochastic processes and is based on a statistical approach to finding the solution of the 
diffusion equation and the application of a continuous transformation of the measure of a 
Wiener process which eliminates the convective tern /a/. However, this problem can be solved 
using the Feynman operator formalism /9/ which offers greater possibilities compared with the 
methods which have been specially developed solely for the investigation of diffusion processes, 
The Feynman operator formalism is a generalization of the Fock representation for an inverse 
operator to the case when there are non-commutating quantities in the operator. 

According to Fock, Green's function for the operator L&a) can be written in the form 

G (r, t; r’, t’) = L-l (a,, a) 8 (r - r’) 8 (t - t') 

~-1 (a,, a) = S dz exp [-L (a,, a) T] 
0 
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Fig.1 
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Fig.2 
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Fig.3 

(d) 

Fig.4 

However, in the case under consideration, the operator L depends explicitly on the 
coordinates and time and, as a consequence of the non-commution of the quantities occurring 
in it, 

[a,, v (r, 1)1_ = a,v (r, t), ia,, v (r, t)l = a,v (r, t) 

it is necessary to determine the sequence in which the operators in the exponential factor 
act. For this purpose, following Feynman /9/, we introduce an ordering parameter s and 
determine the sequence in which the operators a, (s), a (s), v (I, t; s) act in order of increasing 
s (of "natural time"). Here, the inverse operator L-' is written in the form* (*E.V. 
Teodorovich, On infrared divergences and the role of local and non-local interactions in the 
formation of a state of widespread turbulence: Preprint 388, Inst. Problem Mekhan. Akad. Nauk 
SSSR, Moscow, 22, 19893. 

~~'(~,,~~v(r,f))=~drexp{-~S~~~~(s)+v(r,t;s)~(s)-x~~(~)]} (2.2) 
" 0 

In order to "disentangle the operator exponent" it is necessary to eliminate the second 
power of the operator d(s) in the exponential factor and it then Becomes possible to inter- 
pret expressions of the type of exp (ati,) and exp (bd) as operators which shift the arguments 
in accordance with the identities 

exp (aa,) f (r, t) = f (r, t + 4 exp (hd).f (r, t) = f (r + b, t) (2.3) 

For this purpose, we apply the Stratonovich transform /lo/ which is the functional 
analogue of a Weierstrass transform /li/, 

(2.4) 

Here g(s) are arbitrary functions which are defined in the interval (0,~) and d 161 
is an integral measure (an elementary volume in the functional space). 

As a result of the application of formulae (2.41 and (2.2) and the use of formulae (2.2) 
and taking account of the rules for the sequence in which non-commutinq operators act, we 
find 

~-l(a,,aIv(rit))-~~Sdt51X 
0 

(2.5) 
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erp i s -4 ' ds[b(s)+ V(r,t, L s; F;)]* exp {- ids [at (4 - c (s) 9 (s)l) 
0 D 

After the arguments have been shifted in formula (2.51, no non-commuting operators remain 
and, as a result of this, it is possible to omit the dependence of v (r, t;s) on the "natural 
time" s. 

When v =O, formula (2.5) is identical with the Wienerrepresentationfor the solution 
of the diffusion equation in the form of an integral along trajectories. Here, the functional 
variable 5 6) t which has been formally introduced in carrying out the Stratonovich trans- 
formation, is identical with the velocity of the motion along a trajectory. The generalization 
to the case when v#O reduces to making allowance for the inhomogeneous deflection of 
the trajectories due to the motion of the medium, which corresponds to the assumption which 
was made without sufficient grounds in /12/. 

In can be seen from (2.5) that (r-r', t - t') and (T, f) are the arguments of Green's 
function and the dependence on the latter arguments only occurs in terms of the function 
v (r, 6. It is therefore useful to carry out a Fourier transformation with respect to the 
variables r - r', t - t' and then again to use a Stratonovich transformation 12.4) in order 
to remove the square of the velocity in the exponential factor (2.5). After this trans- 
formation has been carried out, we find that the dependence on the velocity V (r, 1) turns 
out to be isolated in the form of a separate factor. As a result of this, we obtiin the 
equality 

(L-l(-_ire,ipIv(r,t)))=~(p,w)-~~Sd[FJd[q]x 
d 

e~~(-~~~[xb~sf-~~-~[~+q~s)l5(s)l] x 
i 

(exp (i 5 dsq (8) V (r, t, z, s; 5))) 
0 

B (x, z) = A (96, 7) A (1/(4x), T) 

in averaging over the ensemble, where the average occurring on the right-hand side is the 
characteristic functional of the velocity field. 

In the case of a random Gaussian process, the characteristic functional is expressed in 
terms of a pair correlation function which, in the case of a homogeneous and stationary 
stochastic process is solely dependent on the differences in the coordinates and times 

Here, by virtue of 

The characteristic 

<Vi (r, t) q (r’, f’)) = C, (r - r’, f - t’) 

the incompressibility condition, it satisfies the equation 

aiC,j (? - f, t - t’) = di'Cij (r - r', t _ 1') = 0 

functional of a Gaussian process is defined by the relationship 

<exp~~~dsq~(s)ui(r+S’as’~(s’},t-r+sjj)=RXP~-~f~.O~(lr~)~ 
s 

w (Lt’; qi E) = +- ~ds~ds’rli(s)1,(s’)Cij(Sd15(E)~r-s~) 
t’ t’ d’ 

As a result, we find 

(2.6) 

for the Fourier transform of the averaged Green function. 
We will now present some further formulae which are obtained after carrying out inverse 

Fourier transformations with respect to the time and coordinates 
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C(p, t - t’) = Be; ;L’,,, s d (51 d bll x 

exp {- Sd~[xq~(s) -- i[p + q(s)]C (s)] --w& f; rlt 6)) 
V 

(2.7) 

The formula for c(r - r', t - t') is obtained from (2.7) if one puts p = 0 in the 
exponential factor and requires that 

t 
r-&=-~&g(S) 

1’ 

Note that formulae (2.6) and (2.7) are exact within the framework of a model of a 
statistically homogeneous and stationary Gaussian process for the fluctuations of a velocity 
field and their derivation is not associated with perturbation theory and any assumption 
whatsoever concerning the existence of a small parameter. Although continuous integration 
can only be carried out precisely in certain special cases (see below), formulae (2.6) and 
(2.7) can serve as a source for obtaining asymptotic expansions or be used in numerical 
integration. In particular, information can be obtained from (2.6) regarding the effect of 
large-scale random motions on small-scale motions which is of interest in the theory of 
turbulence in connection with the problem of separating out the direct interactions of 
vortices with substantially differing scales which describe transport effects from dynamical 
interactions which achieve energy transfer along the wave number spectrum (see the reference 
given in the footnote). 

3. In the case when the velocity fluctuations are a random Markov process ("white noise") 

C{, (r - r', t - t') = Cii (r - r') is (t - 2') (3.1) 
it is possible to carry out of all calculations right up to the end since the functional 
integration in (2.6) can be successfully carried out. For the d-dimensional turbulence we 
represent the correlation function of the velocity field, taking account of incompressibility,. 
in the form 

By substituting expression (3.2) into (2.6). and using (3.1) we obtain 

x* = x + 6x =: x + + 4 s [ 3 
I-+$jC(y) 

The integral in (3.4) is independent of the function F; (s) which becomes obvious after 

integration over the angular variables which can be carried out in an explicit form. We have 

where (3 is the angle between the vectors F;(S) and q and .sd is the area of the surface of a 
d-dimensional sphere of unit radius. 

We therefore get 

The functional integrations in (3.3) are carried out using the scheme: 

(3.5) 



225 

where the following operations are successively carried out: reduction of the integral to 
Gaussian form with respect to '1, integration with respect to rl and reduction of the integral 
to a Gaussian form with respect to I, integration with respect to 6 and application of the 
relationship A (x, @A (a%, T) = AP (a, z) which is readily verified for Gaussian integrals. 

Hence, in the case of a Markov random process (this assumption means that the displace- 
ment of the trajectories at a given point is independent of the shape of the trajectory in 
the preceding segments which is determined by the overall action of the molecular and turbulent 
motion), the effect of turbulent mixing reduces to renormalization of the molecular diffusion 
coefficient, that is, to the replacement x-+X*-X+& which corresponds to a faster 
course for the diffusion processes. Taylor's hypothesis 113.1 concerning the additivity of 
the molecular and turbulent transport coefficients is confirmed in the case of a Markov 
process. 

However, the random fluctuations of a velocity field are not, in fact, Markov processes 
and, in the general case, functional integration cannot be successfully carried out. Never- 
theless, there is one further special case when it can be done, that is, the case of spatially 
homogeneous random velocities Y (F, t) = Y (t). Here, from formula (2.7) we find 

G(p,o/“(t))=~drexp{-j5ds,-~“~xp’$-ipv(t-~~~)l} (3.6) 
0 0 

after functional integration with respect to 5. 
Averaging over the ensemble of random velocity samples we obtain 

<G (p,W] v(t))) = [dzexp[-(-io+ %P3]W tP3 tar) 
0 

where 

(3.7) 

W(p,t,r)=<expt-ij~~pv(t--r+s)l> 
0 

is the characteristic functional of the velocity field. In the case of a random Gaussian 
process 

In connection with formula (3.6), we note that it is identical with the expression for 
Gxeen's function in 
invariant theory of 
Elektrometrii, Sib. 

In the case of 

the transport approximation*. (*V.I. Belinicher and V.S. L'vov, Scale- 
widespread hydrodynamic turbulence: Prepint 333, Inst. Avtomatiki i 
Otd. Akad. Nauk SSSR, Novosibirsk, 1986.) 
a statistically stationary and isotropic velocity field, we have 

(Vj (t) Vj (t’)) = S+jC (t - 1’) 

and, as the result after carrying out an inverse Fourier transformation, we find 

(3.8) 

Hence, in the problem under consideration, the evolution of the concentration occurs 
both as in the case of conventional diffusion processes but with the replacement of the time 
by an effective time t* which is determined by the second relationship of (3.8). In the case 
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of a Markov process c(t - t') = C,6(t - t'), the effective time is proportional to the con- 
ventional time: 

t* = [I + C,/(2x)l t 

and the result to a renormalization of the diffusion coefficient x-+x* =X f 'i,C, as in 
the case of inhomogeneous Markov velocity pulsations. 

Although turbulent velocity pulsations are not, in fact, Markov processes /6, 14/, the 
Markov approximation must nevertheless yield sensible results when estimating the influence 
of small-scale velocity pulsations on large-scale processes since 

Cii (9, t - t') = Cif (9) exp r-v (Q) q2 1 t - fII 

and, for large 4, the correlation time will be small. The estimation of the corrections to 
the Markov approximation in the diffusion problem has been considered by Drummond /12/. 
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